<VirtualHost 192.168.167.241:80>
ServerName cloud.pronto.de
ServerAlias
DocumentRoot /home/cloud.pronto.de/owncloud/
ServerAdmin prontos@email.de
CustomLog /var/log/apache2/cloud.pronto.de-access.log combined
ErrorLog /var/log/apache2/cloud.pronto.de-error.log
LogLevel warn
</VirtualHost>

<VirtualHost 192.168.167.241:443>
ServerAdmin webmaster@localhost
ServerName cloud.kastner.de

DocumentRoot /home/cloud.pronto.de/owncloud/
<Directory />
Options FollowSymLinks
AllowOverride None
</Directory>
<Directory /var/www/>
Options Indexes FollowSymLinks MultiViews
AllowOverride None
Order allow,deny
allow from all
</Directory>

ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/
<Directory "/usr/lib/cgi-bin">
AllowOverride None
Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch
Order allow,deny
Allow from all
</Directory>

ErrorLog ${APACHE LOG DIR}/ssl cloud.pronto.de-error.log

Possible values include: debug, info, notice, warn, error, crit,
alert, emerg.
LogLevel warn

CustomLog ${APACHE_LOG DIR}/ssl cloud.pronto.de-error.log combined

SSL Engine Switch:
Enable/Disable SSL for this virtual host.
SSLEngine on

A self-signed (snakeoil) certificate can be created by installing
the ssl-cert package. See
/usr/share/doc/apache2.2-common/README.Debian.gz for more info.
If both key and certificate are stored in the same file, only the
SSLCertificateFile directive is needed.

SSLCertificateFile /etc/ssl/cloud.cer

SSLCertificateKeyFile /etc/ssl/cloud.key

HoH W HH

Server Certificate Chain:
Point SSLCertificateChainFile at a file containing the
concatenation of PEM encoded CA certificates which form the
certificate chain for the server certificate. Alternatively
the referenced file can be the same as SSLCertificateFile
when the CA certificates are directly appended to the server
certificate for convinience.

SSLCertificateChainFile /etc/apache2/ssl.crt/server-ca.crt

Certificate Authority (CA):
Set the CA certificate verification path where to find CA
certificates for client authentication or alternatively one
huge file containing all of them (file must be PEM encoded)
Note: Inside SSLCACertificatePath you need hash symlinks
to point to the certificate files. Use the provided
Makefile to update the hash symlinks after changes.
#SSLCACertificatePath /etc/ssl/certs/
#SSLCACertificateFile /etc/apache2/ssl.crt/ca-bundle.crt

HHHHHFHFH HBHHHFHHHH

Certificate Revocation Lists (CRL):
Set the CA revocation path where to find CA CRLs for client
authentication or alternatively one huge file containing all
of them (file must be PEM encoded)
Note: Inside SSLCARevocationPath you need hash symlinks

to point to the certificate files. Use the provided

HHRHFHFHFH

Makefile to update the hash symlinks after changes.
#SSLCARevocationPath /etc/apache2/ssl.crl/
#SSLCARevocationFile /etc/apache2/ssl.crl/ca-bundle.crl

Client Authentication (Type):

Client certificate verification type and depth. Types are

none, optional, require and optional no_ca. Depth is a

number which specifies how deeply to verify the certificate
issuer chain before deciding the certificate is not valid.

#SSLVerifyClient require

#SSLVerifyDepth 10

Access Control:
With SSLRequire you can do per-directory access control based
on arbitrary complex boolean expressions containing server
variable checks and other lookup directives. The syntax is a
mixture between C and Perl. See the mod_ssl documentation
for more details.
#<Location />
#SSLRequire (${SSL_CIPHER} !~ m/"(EXP|NULL)/ \
and %{SSL_CLIENT S_DN_O} eq "Snake 0il, Ltd." \
and %${SSL_CLIENT S_DN_OU} in {"Staff", "CA", "Dev"} \
and ${TIME WDAY} >= 1 and %{TIME_WDAY} <= 5 \
and ${TIME HOUR} >= 8 and %{TIME_HOUR} <= 20)\
or ${REMOTE_ADDR} =~ m/"192\.76\.162\.[0-9]+$/
</Location>

FoH W HH

SSL Engine Options:

Set various options for the SSL engine.

o FakeBasicAuth:
Translate the client X.509 into a Basic Authorisation. This means that
the standard Auth/DBMAuth methods can be used for access control. The
user name is the “one line' version of the client's X.509 certificate.
Note that no password is obtained from the user. Every entry in the user
file needs this password: “xxj31ZMTZzkVA'.

o ExportCertData:
This exports two additional environment variables: SSL_CLIENT_CERT and
SSL_SERVER_CERT. These contain the PEM-encoded certificates of the
server (always existing) and the client (only existing when client
authentication is used). This can be used to import the certificates
into CGI scripts.

o StdEnvVars:
This exports the standard SSL/TLS related “SSL_*' environment variables.
Per default this exportation is switched off for performance reasons,
because the extraction step is an expensive operation and is usually
useless for serving static content. So one usually enables the
exportation for CGI and SSI requests only.

o StrictRequire:

This denies access when "SSLRequireSSL" or "SSLRequire" applied even

under a "Satisfy any" situation, i.e. when it applies access is denied

and no other module can change it.

OptRenegotiate:

This enables optimized SSL connection renegotiation handling when SSL

directives are used in per-directory context.

#SSLOptions +FakeBasicAuth +ExportCertData +StrictRequire

<FilesMatch "\.(cgi|shtml|phtml|php)$">

SSLOptions +StdEnvVars
</FilesMatch>
<Directory /usr/lib/cgi-bin>
SSLOptions +StdEnvVars
</Directory>

FHHHFHHHFHFRFFHFFIFIHFFHRFFFIHIHRHHHFHIHRH O HBHFHHHH
[e]

SSL Protocol Adjustments:

The safe and default but still SSL/TLS standard compliant shutdown

approach is that mod_ssl sends the close notify alert but doesn't wait for

the close notify alert from client. When you need a different shutdown

approach you can use one of the following variables:

o ssl-unclean-shutdown:
This forces an unclean shutdown when the connection is closed, i.e. no
SSL close notify alert is send or allowed to received. This violates
the SSL/TLS standard but is needed for some brain-dead browsers. Use
this when you receive I/0 errors because of the standard approach where
mod_ssl sends the close notify alert.

o ssl-accurate-shutdown:
This forces an accurate shutdown when the connection is closed, i.e. a
SSL close notify alert is send and mod_ssl waits for the close notify
alert of the client. This is 100% SSL/TLS standard compliant, but in
practice often causes hanging connections with brain-dead browsers. Use
this only for browsers where you know that their SSL implementation
works correctly.

HFHKBRHRHFHFHRHRHRHRHHBHRHRHRHR®®

Notice: Most problems of broken clients are also related to the HTTP
keep-alive facility, so you usually additionally want to disable
keep-alive for those clients, too. Use variable "nokeepalive" for this.
Similarly, one has to force some clients to use HTTP/1.0 to workaround
their broken HTTP/1.1 implementation. Use variables "downgrade-1.0" and
"force-response-1.0" for this.
rowserMatch "MSIE [2-6]" \
nokeepalive ssl-unclean-shutdown \
downgrade-1.0 force-response-1.0
MSIE 7 and newer should be able to use keepalive
BrowserMatch "MSIE [17-9]" ssl-unclean-shutdown

W o3k W HH

</VirtualHost>

