
<VirtualHost 192.168.167.241:80>
 ServerName cloud.pronto.de
 ServerAlias
 DocumentRoot /home/cloud.pronto.de/owncloud/
 ServerAdmin prontos@email.de
 CustomLog /var/log/apache2/cloud.pronto.de-access.log combined
 ErrorLog /var/log/apache2/cloud.pronto.de-error.log
 LogLevel warn
</VirtualHost>

<VirtualHost 192.168.167.241:443>
 ServerAdmin webmaster@localhost
 ServerName cloud.kastner.de

 DocumentRoot /home/cloud.pronto.de/owncloud/
 <Directory />
 Options FollowSymLinks
 AllowOverride None
 </Directory>
 <Directory /var/www/>
 Options Indexes FollowSymLinks MultiViews
 AllowOverride None
 Order allow,deny
 allow from all
 </Directory>

 ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/
 <Directory "/usr/lib/cgi-bin">
 AllowOverride None
 Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch
 Order allow,deny
 Allow from all
 </Directory>

 ErrorLog ${APACHE_LOG_DIR}/ssl_cloud.pronto.de-error.log

 # Possible values include: debug, info, notice, warn, error, crit,
 # alert, emerg.
 LogLevel warn

 CustomLog ${APACHE_LOG_DIR}/ssl_cloud.pronto.de-error.log combined

 # SSL Engine Switch:
 # Enable/Disable SSL for this virtual host.
 SSLEngine on

 # A self-signed (snakeoil) certificate can be created by installing
 # the ssl-cert package. See
 # /usr/share/doc/apache2.2-common/README.Debian.gz for more info.
 # If both key and certificate are stored in the same file, only the
 # SSLCertificateFile directive is needed.
 SSLCertificateFile /etc/ssl/cloud.cer
 SSLCertificateKeyFile /etc/ssl/cloud.key

 # Server Certificate Chain:
 # Point SSLCertificateChainFile at a file containing the
 # concatenation of PEM encoded CA certificates which form the
 # certificate chain for the server certificate. Alternatively
 # the referenced file can be the same as SSLCertificateFile
 # when the CA certificates are directly appended to the server
 # certificate for convinience.
 #SSLCertificateChainFile /etc/apache2/ssl.crt/server-ca.crt

 # Certificate Authority (CA):
 # Set the CA certificate verification path where to find CA
 # certificates for client authentication or alternatively one
 # huge file containing all of them (file must be PEM encoded)
 # Note: Inside SSLCACertificatePath you need hash symlinks
 # to point to the certificate files. Use the provided
 # Makefile to update the hash symlinks after changes.
 #SSLCACertificatePath /etc/ssl/certs/
 #SSLCACertificateFile /etc/apache2/ssl.crt/ca-bundle.crt

 # Certificate Revocation Lists (CRL):
 # Set the CA revocation path where to find CA CRLs for client
 # authentication or alternatively one huge file containing all
 # of them (file must be PEM encoded)
 # Note: Inside SSLCARevocationPath you need hash symlinks
 # to point to the certificate files. Use the provided

 # Makefile to update the hash symlinks after changes.
 #SSLCARevocationPath /etc/apache2/ssl.crl/
 #SSLCARevocationFile /etc/apache2/ssl.crl/ca-bundle.crl

 # Client Authentication (Type):
 # Client certificate verification type and depth. Types are
 # none, optional, require and optional_no_ca. Depth is a
 # number which specifies how deeply to verify the certificate
 # issuer chain before deciding the certificate is not valid.
 #SSLVerifyClient require
 #SSLVerifyDepth 10

 # Access Control:
 # With SSLRequire you can do per-directory access control based
 # on arbitrary complex boolean expressions containing server
 # variable checks and other lookup directives. The syntax is a
 # mixture between C and Perl. See the mod_ssl documentation
 # for more details.
 #<Location />
 #SSLRequire (%{SSL_CIPHER} !~ m/^(EXP|NULL)/ \
 # and %{SSL_CLIENT_S_DN_O} eq "Snake Oil, Ltd." \
 # and %{SSL_CLIENT_S_DN_OU} in {"Staff", "CA", "Dev"} \
 # and %{TIME_WDAY} >= 1 and %{TIME_WDAY} <= 5 \
 # and %{TIME_HOUR} >= 8 and %{TIME_HOUR} <= 20) \
 # or %{REMOTE_ADDR} =~ m/^192\.76\.162\.[0-9]+$/
 #</Location>

 # SSL Engine Options:
 # Set various options for the SSL engine.
 # o FakeBasicAuth:
 # Translate the client X.509 into a Basic Authorisation. This means that
 # the standard Auth/DBMAuth methods can be used for access control. The
 # user name is the `one line' version of the client's X.509 certificate.
 # Note that no password is obtained from the user. Every entry in the user
 # file needs this password: `xxj31ZMTZzkVA'.
 # o ExportCertData:
 # This exports two additional environment variables: SSL_CLIENT_CERT and
 # SSL_SERVER_CERT. These contain the PEM-encoded certificates of the
 # server (always existing) and the client (only existing when client
 # authentication is used). This can be used to import the certificates
 # into CGI scripts.
 # o StdEnvVars:
 # This exports the standard SSL/TLS related `SSL_*' environment variables.
 # Per default this exportation is switched off for performance reasons,
 # because the extraction step is an expensive operation and is usually
 # useless for serving static content. So one usually enables the
 # exportation for CGI and SSI requests only.
 # o StrictRequire:
 # This denies access when "SSLRequireSSL" or "SSLRequire" applied even
 # under a "Satisfy any" situation, i.e. when it applies access is denied
 # and no other module can change it.
 # o OptRenegotiate:
 # This enables optimized SSL connection renegotiation handling when SSL
 # directives are used in per-directory context.
 #SSLOptions +FakeBasicAuth +ExportCertData +StrictRequire
 <FilesMatch "\.(cgi|shtml|phtml|php)$">
 SSLOptions +StdEnvVars
 </FilesMatch>
 <Directory /usr/lib/cgi-bin>
 SSLOptions +StdEnvVars
 </Directory>

 # SSL Protocol Adjustments:
 # The safe and default but still SSL/TLS standard compliant shutdown
 # approach is that mod_ssl sends the close notify alert but doesn't wait for
 # the close notify alert from client. When you need a different shutdown
 # approach you can use one of the following variables:
 # o ssl-unclean-shutdown:
 # This forces an unclean shutdown when the connection is closed, i.e. no
 # SSL close notify alert is send or allowed to received. This violates
 # the SSL/TLS standard but is needed for some brain-dead browsers. Use
 # this when you receive I/O errors because of the standard approach where
 # mod_ssl sends the close notify alert.
 # o ssl-accurate-shutdown:
 # This forces an accurate shutdown when the connection is closed, i.e. a
 # SSL close notify alert is send and mod_ssl waits for the close notify
 # alert of the client. This is 100% SSL/TLS standard compliant, but in
 # practice often causes hanging connections with brain-dead browsers. Use
 # this only for browsers where you know that their SSL implementation
 # works correctly.

 # Notice: Most problems of broken clients are also related to the HTTP
 # keep-alive facility, so you usually additionally want to disable
 # keep-alive for those clients, too. Use variable "nokeepalive" for this.
 # Similarly, one has to force some clients to use HTTP/1.0 to workaround
 # their broken HTTP/1.1 implementation. Use variables "downgrade-1.0" and
 # "force-response-1.0" for this.
 BrowserMatch "MSIE [2-6]" \
 nokeepalive ssl-unclean-shutdown \
 downgrade-1.0 force-response-1.0
 # MSIE 7 and newer should be able to use keepalive
 BrowserMatch "MSIE [17-9]" ssl-unclean-shutdown

</VirtualHost>

